Gigaom

We already know how powerful techniques such as machine learning and sentiment analyis can be when it comes to deciphering consumer behavior online, and now it seems they can identify bullies, as well. A group of University of Wisconsin researchers have developed a machine learning algorithm that’s identifying more than 15,000 tweets per day relating to bullying — complete with loads of associated sociological insights — which begs the question of how to act on that data. How do you govern a social web that can be simultaneously a communication platform, a research lab full of unknowing subjects and a boiling-over pot of criminal evidence?

How the model works and what it found

In order to train their model, the researchers fed it two sets of tweets — one they had determined to be about bullying activity and another that was not. Once the model had learned the language identifiers…

Lihat pos aslinya 782 kata lagi

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s